FRM资讯

FRM 其它课程 金程教育 · 金色前程 · 在你我手中

考试题库课程直播资料

FRM考试中的常见金融风险模型有哪些

发表时间:2016-07-05 来源:金程网校 告诉小伙伴:
【编者按】FRM考试中的常见金融风险模型有哪些?2016年FRM报名条件有哪些?随着金融市场的不断发展,应对金融风险也有了更科学的方式。2016年FRM考试内容,理论知识不断更新,金融风险的模型也越来越多。今天金程网校FRM小编就来为大家介绍几个常见的金融风险模型,其中有几个是2016年FRM考纲中出现过的,大家要重视。

FRM考试中的常见金融风险模型有哪些?2016年FRM报名条件有哪些?随着金融市场的不断发展,应对金融风险也有了更科学的方式。2016年FRM考试内容,理论知识不断更新,金融风险的模型也越来越多。今天金程网校FRM小编就来为大家介绍几个常见的金融风险模型,其中有几个是2016年FRM考纲中出现过的,大家要重视。

FRM考试中的常见金融风险模型有哪些?

一、波动性方法

自从1952年Markowitz 提出了基于方差为风险的最优资产组合选择理论后,方差(均方差)就成了一种极具影响力的经典的金融风险度量。方差计算简便,易于使用,而且已经有了相当成熟的理论。当然,波动性方法也存在以下缺点:

(1)把收益高于均值部分的偏差也计入风险,这可能大家很难接受;

(2)以收益均值作为回报基准,也与事实不符;

(3)只考虑平均偏差,不适合用来描述小概率事件发生所导致的巨大损失,而金融市场中的“稀少事件”产生的极端风险才是金融风险的真正所在。

二、VaR模型(Value at Risk)

风险价值模型产生于1994年,比较正规的定义是:在正常市场条件下和一定的置信水平a上,测算出在给定的时间段内预期发生的最坏情况的损失大小X。在数学上的严格定义如下:设X是描述证券组合损失的随机变量,F(x)是其概率分布函数,置信水平为a,则:VaR(a)=-inf{x|F(x)≥a}。该模型在证券组合损失X符合正态分布,组合中的证券数量不发生变化时,可以比较有效的控制组合的风险。因此,2001年的巴塞耳委员会指定VaR模型作为银行标准的风险度量工具。但是VaR模型只关心超过VaR值的频率,而不关心超过VaR值的损失分布情况,且在处理损失符合非正态分布(如厚尾现象)及投资组合发生改变时表现不稳定。

三、灵敏度分析法

灵敏度方法是对风险的线性度量,它测定市场因子的变化与证券组合价值变化的关系。对于市场因子的特定变化量,通过这关系种变化关系可得到证券组合价值的变化量。针对不同的金融产品有不同的灵敏度。比如:在固定收入市场的久期,在股票市场的“β”,在衍生工具市场“δ”等。灵敏度方法由于其简单直观而得到广泛的应用但是它有如下的缺陷:

(1)只有在市场因子变化很小时,这种近似关系才与现实相符,是一种局部性测量方法;

(2)对产品类型的高度依赖性;

(3)不稳定性。如股票的“贝塔”系数存在不稳定的缺陷,用其衡量风险,有很大的争议;

(4)相对性。敏感度只是相对的比例概念,并没有回答损失到底有多大。

四、一致性风险度量模型(Coherentmeasure of risk)不想重考,想一次通过,我有秘诀!!!

Artzner et al.(1997)提出了一致性风险度量模型,认为一个完美的风险度量模型必须满足下面的约束条件:

(1)单调性;

(2)次可加性;

(3)正齐次性;

(4)平移不变性。

次可加性条件保证了组合的风险小于等于构成组合的每个部分风险的和,这一条件与我们进行分散性投资可以降低非系统风险相一致,是一个风险度量模型应具有的重要的属性,在实际中如银行的资本金确定和最优化组合确定中也具有重要的意义。目前一致性风险度量模型有:

(1)CVaR模型(Condition Value at Risk):条件风险价值(CVaR)模型是指在正常市场条件下和一定的置信水平a上,测算出在给定的时间段内损失超过VaRa的条件期望值。CVaR模型在一定程度上克服了VaR模型的缺点不仅考虑了超过VaR值的频率,而且考虑了超过VaR值损失的条件期望,有效的改善了VaR模型在处理损失分布的后尾现象时存在的问题。当证券组合损失的密度函数是连续函数时,CVaR模型是一个一致性风险度量模型,具有次可加性,但当证券组合损失的密度函数不是连续函数时,CVaR模型不再是一致性风险度量模型,即CVaR模型不是广义的一致性风险度量模型,需要进行一定的改进。

(2)ES模型(Expected Shortfall):ES模型是在CVaR基础上的改进版,它是一致性风险度量模型。如果损失X的密度函数是连续的,则ES模型的结果与CVaR模型的结果相同;如果损失X的密度函数是不连续的,则两个模型计算出来的结果有一定差异。

(3)DRM模型(Distortion Risk-Measure):DRM通过一个测度变换得到一类新的风险度量指标。DRM模型包含了诸如VaR、CVaR等风险度量指标,它是一类更广义的风险度量指标。

(4)谱风险测度:2002年,Acerbi对ES进行了推广,提出了谱风险测度(Spectral Risk Measure)的概念,并证明了它是一致性风险度量。但是该测度实际计算的难度很大,维数过高时,即使转化成线性规划问题,计算也相当困难。

 

金程网校2016年FRM课程推荐:http://www.gfedu.cn/class/frm/
400-700-9596
(每日9:00-21:00免长途费 )

©2014金程网校保留所有权利

TOP
X

注册金程网校

同意金程的《用户协议》

已有账号,马上登录